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The frequency and shear dependent critical viscosity at a correlation lengthj=k−1 has the formh
=h0k−xhGsz1,z2d, wherez1 and z2 are the independent dimensionless numbers in the problem defined asz1

=−iv /2G0k3 andz2=−iv /2G0kc
3. The decay rate of critical fluctuations of correlation lengthk−1 is G0k3 and

kc is the effective wave number for whichG0kc
3=S, the shear rate. The functionGsz1,z2d is calculated in a

one-loop self-consistent theory.
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Response functions, in general, tend to diverge near a
second-order phase transition point. As the fluctuations be-
come more long range and drive the system toward the tran-
sition, the response functions in the thermodynamic limitsif
staticd and in the hydrodynamic limitsif dynamicd diverge.
Some, such as the susceptibilitysstaticd and thermal diffusiv-
ity sdynamicd f1g, diverge strongly with an exponent near
one, others, such as the specific heatsstaticd and shear vis-
cosity sdynamicd f2–4g, diverge weakly with an exponent
close to zero. The small exponents have always provided an
interesting challenge for theorists and experimentalists. The
shear viscosity of ordinary fluids or binary mixtures, in par-
ticular, has been a favorite candidate for pushing theory and
experiment to the limit. The exponent is small but over the
last two decades the experimentsf5,6g have increased the
accuracy of the measurements so strongly that theorists have
had to worry about higher loopsf7,8g, something, which is
rarely done.

The critical divergence is masked if the system is not in
the hydrodynamic limit. Hydrodynamic limit implies the
wavelength is larger than the critical correlation length and
all frequencies are lower than the rate of decay of critical
fluctuations. While wavelengths are always larger than the
critical correlation length, critical slowing down may imply
that frequencies may not be smaller than the fluctuation re-
laxation rate. The frequency of an oscillating viscometer
used to measure the critical viscosity can, in that case, deter-
mine the viscosity of the sample, and the fluid will become
viscoelastic.

The frequency dependence of the viscosity has been pre-
dictedf9,10g and measured over the last two decades. It has
been recognized by Oxtobyf13g and othersf9–12g that a
shear rate will also introduce a time scale in the problem,
and, if the fluctuations are more long lived than this time
scale, then experiments on this time scale will not feel the
longest-lived fluctuations and the viscosity will be limited by
the shear rate—a phenomenon known as shear thinning. The
dependence of various static quantities on the shear rate as
well as its effect on light scattering has been considered by
Onuki f14g as well as Onuki and Kawasakif15g. With so
much information available on both theoretical and experi-
mental fronts, experiments have been designed to test the
shear thinning of critical viscoelastic fluids. The only previ-
ous measurement of shear thinning near a critical point is
that of Hamanoet al. f16g, which was carried out on a mi-
cellar solution. We have carried out a one-loop calculation of

the frequency and shear dependent critical viscosity and
present our results in this paper.

It should be noted that the physical effect of both finite
frequency and finite shear are similar. They both inhibit the
divergence of the hydrodynamic shear viscosity because they
produce an effective low-momentum cutoff to the continuous
distribution of modes in the system. This has prompted the
recent observation by Bergf17g that there should be a Cox-
Merz f18g rule for the critical fluid. The Cox-Merz rule
equates the viscosityhsSd measured at a shear rateS and
zero frequency to the viscosityhsvd measured at some fre-
quencyv and zero shear. This observation is often used to
estimate shear thinning of polymer meltsf19g, and a slightly
generalized form has been applied to concentrated suspen-
sion f20g. The physical origin of the Cox-Merz rule has been
explored by Renardyf21g. It is clear that this empirical ob-
servation will be correct in a general sense, but a complete
description of the shear thinning and especially shear thin-
ning in the presence of viscoelasticityson this issue the Cox-
Merz rule is not applicabled can be had only on the basis of
a detailed calculation. This is the aim of our paper.

We begin by discussing the effect of critical fluctuations
on the shear viscosity of a fluid near its critical point. First,
we consider the proper hydrodynamic limit, i.e., wave vector
skd and frequencysvd tend to zero.

In the hydrodynamic regime, characterized by the sole
length scale, the correlation lengthj=k−1=j0fsT−Tcd /Tcg−n

with n. 2
3, the shear viscosity diverges as

hskd = h0k−xh, s1d

where xh is the small exponent discussed above which is
found to be around 0.068. The decay time of the critical
fluctuationst is given by

t−1 = Gsk,kd =
L

x
k2, s2d

whereL is the Onsager coefficient andx is the static suscep-
tibility. The critical susceptibility can, to a very good accu-
racy, be taken asx−1sk,kd=k2+k2, and the Onsager coeffi-
cient or thermal diffusivity diverges at the critical point. The
behavior of wavelength and correlation length dependent dif-
fusivity is governed by the Kawasaki functionf1g, which
was simplified for practical use by Ferrellf22g and can be
used in the form
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L = G0sk2 + k2d−1/2 s3d

in D=3, whereD is the spatial dimensionality. The charac-
teristic decay time of a fluctuation of wavelength equal to the
correlation length is given by

t−1 = Gskd = G0k3. s4d

Hydrodynamic regime implies that frequencies are such that
vt!1. However, at a fixed frequencyv, ask decreases on
approaching the critical point,t diverges and it is not pos-
sible to satisfyvt,1. In that situation Eq.s1d cannot hold,
and, if t−1.0, the response is limited by the frequencyv.
Sincev scales ask3, it is clear that the limiting viscosity will
be of the form

hsvd = h0s− ivd−xh/3 s5d

and the full viscosity will be governed by

hsk,vd = h0k−xhFszd−xh/3, s6d

where Fszd is a function of the dimensionless variablez
=−iv /2G0k3. For z→0, Fszd→1 and if z@1, Fszd~z. The
simplest possible functional representation ofFszd is

Fszd = 1 +bz. s7d

Now, b is a number ofOs1d, which can be found from the
smallz form of the one-loop integral or from thez@1 form.
If determined from the low-frequency endb=3p /16.0.59.
From the high-frequency endb.0.2. The two-loop calcula-
tion is found to enhanceb by about 30% to 0.8 at the low-
frequency end. The experimental value found by Berget al.
f6g is about 1.2.

If a shear rateS is now switched on, which results in a
mean flow inssayd the x direction, then the velocity can be
written as

vW = Syex̂. s8d

The shear rateS introduces a length scalekc
−1 defined by

S= Gkc
3. s9d

Strong shear implieskc.k, while the reverse is the case of
weak shear. Our primary interest will be in strong shear,
which will always be the case, sufficiently close to the criti-
cal point. For the shear thinning of a viscoelastic fluid we
now have two dimensionless numbers in the problemz1
=v /2G0k3 andz2=v /2G0kc

3 and Eq.s6d is generalized to

h = h0k−xhfGsz1,z2dg−xh/3 s10d

Our purpose is to find an expression forGsz1,z2d at the one-
loop level.

The equation of motion for the order parameter is nonlin-
ear. The effect of the nonlinearity is to make the transport
coefficient divergent in the absence of the shear. The contri-
bution of the shear to the equation of motion is a linear term.
Consequently, we will work with an effective equation of
motion where the effect of the nonlinear terms will be
handled by a dressing of the transport coefficient. Conse-
quently, in momentum space, the order parameterfskWd sat-
isfies

]fskWd
]t

+ S
]

]ky
fskWd = −

Lk2

x
fskWd + h, s11d

wherex−1=k2+k2 andL=G0x1/2 as explained in Eq.s3d. We
now need to work out the susceptibility in the presence ofS,
and this is simply retracing Onuki’s calculation with the
presentL. This leads in a straightforward fashion to

x−1 = k2 + k2 + kc
2S ukxu

kc

2

p
D1/2

. s12d

The effect of the changed diffusion coefficient shows up in
the slightly differentkx dependence in the last term on the
right-hand side. In the expression for viscosity, the suscepti-
bility will be averaged over all directions, and, for that spe-
cific case, we will use an angle averaged form ofx−1, where
we replaceukxu1/2 by k1/2ksin1/2 u cos1/2 ul= 2

3k1/2. The one-
loop shear viscosity is now given by

hsk,v,Sd =
h0

4p
E d3p

x2sp,k,Sdp4

− iv + 2G0p
2fxsp,k,Sdg1/2

=
h0

4p
E d3p

p4

Fp2 +
2

3
S 2

p
D1/2

kc
2S p

kc
D1/2

+ k2G2

1

F− iv + 2G0p
2Fp2 +

2

3
S 2

p
D1/2

kc
2S p

kc
D1/2

+ k2G1/2G
=

h0

8pG0
E d3p

p4

Fp2 +
2

3
S 2

p
D1/2Sz1

z2
D1/2

p1/2 + 1G2

1

Fz1 + p2Fp2 +
2

3
S 2

p
D1/2Sz1

z2
D1/2

p1/2 + 1G1/2G . s13d

It is the characterization of this one-loop integral that
has to be carried out. The limitz2→` sor kc→0, i.e., no
sheard has already been treated, and this is what we rep-
resent to the lowest order by Eq.s7d. It should be noted

that Eq. s13d has a logarithmic divergence rather than
a power-law divergence. To extractGsz1,z2d from
Eq. s15d, we use the fact thatxh!1 and expand Eq.s10d
as
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h = h0k−xhfGsz1,z2dg−xh/3 . h0F1 − xh ln k −
xh

3
ln Gsz1,z2dG

= hB + h0Fln
L

k
−

1

3
ln Gsz1,z2dG ,

s14d

wherehB is a background viscosity and the part within the
square brackets emerges from the loop calculation. Here we
anticipate the emergence of a cutoff wave numberL and
include it in the definition of the background viscosity.

For z2→`, Eq. s13d becomes

hsv,kd =
h0

2G0
E

0

L/k

dp
p6

s1 + p2d2

1

fz1 + p2s1 + p2d1/2g

=
h0

2G0
Fln

L

k
+ ln 2 − 2 +

p

4
−

p

16
z1 + ¯ G s15d

for z1!1. On the other hand forz1@1, hsv ,kd=sh0/2G0d
3fln L /k− 1

3ln z1+¯g, which when combined with Eq.
s15d, leads to the approximation shown in Eq.s7d.

Another limit that can be similarly explored isv→0 si.e.,
z1→0 andz2→0, butz1/z2Þ0d in which case, Eq.s13d be-
comes

hsS,kd =
h0

2G0
E

0

L/k

dp
p4

Fp2 +
1

2
Sz1

z2
D1/2

p1/2 + 1G5/2. s16d

For z1/z2!1, an expansion similar to Eq.s15d obtains. For
sz1/z2d@1, we scale momenta bysz1/z2d1/3 to find

hsS,k → 0d =
h0

2G0
E

0

L/kc

dp
p4

Fp2 +
1

2
p1/2 + Sz2

z1
D2/3G5/2

.
h0

2G0
Fln

L

kc
+

4

3
ln 2 −

8

3
+

2p

3
+ ¯ G . s17d

Combining Eq.s17d with the smallz1/z2 form,

Gsz1 → 0,z2 → 0d = F1 + 0.3Sz1

z2
D1/2G2

. s18d

Finally, ask→0, z1→` with finite z2 and Eq.s15d reduces
to

hsv,Sd

=
h0

2G0
E

0

L/kc

dp
p6

Fp2 +
1

2
p1/2G2Fz2 + p2Sp2 +

1

2
p1/2D1/2G .

s19d

For z2→0, we recover Eq.s19d, while for z2→`,

hsv,Sd =
h0

2G0
Fln

L

kc
−

1

3
ln z2 −

3p

8z2
1/2 + ¯ G . s20d

We thus obtain the following limiting forms:

Gsz1,z2d → 1 + 0.6z1 if z2 → `,

Gsz1,z2d → 0.6z1F1 +
3

2

1

z2
1/2G2

if z1 → `,

Gsz1,z2d → F1 + 0.3Sz1

z2
D1/2G2

if z1,z2 → 0. s21d

The form ofGsz1,z2d, taking into account all the above con-
straints, is given by the interpretation formula

Gsz1,z2d = f1 + 0.6z1g31 +
3

2z2
1/2 3

1 + 0.2/z1
1/2

1 +
1

z1
4 . s22d

This is the desired one-loop result. A phenomenological im-
provement can be obtained by going to the zero shear limit at
finite frequency. This impliesz2→`, while z1 is finite. In this
limit, accurate measurementsf6g have been made and we
know from these results that the first factor on the right-hand
side of Eq.s22d represents the data very well, provided 0.6 is
replaced by 1.2. As already explored, part of this can be
accounted for by a two-loop calculationf23g, and, hence, a
phenomenological improvement of Eq.s22d would be to re-
place the coefficient 0.6 by 1.2.

In closing we note that the details ofGsz1,z2d differ in one
essential way from what could be learned on the basis of a
Cox-Merz rule. This has to do with the nonanalytic behavior
in z2 andz1 in the second factor of the right-hand side of Eq.
s22d. This nonanalytic behavior is a direct reflection of the
form of the static susceptibility in Eq.s12d. Thekx

1/2 behavior
shown in Eq.s12d leads to the corresponding nonanalytic
behavior in Eq.s22d. This would be an important issue in any
forthcoming experiment.
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