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Shear thinning of a critical viscoelastic fluid
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The frequency and shear dependent critical viscosity at a correlation lgrgth! has the formzy
=nok *"G(z4,2,), wherez; and z, are the independent dimensionless numbers in the problem defirgd as
=-iw/2Tok® andz,=-iw/ 2T ok, The decay rate of critical fluctuations of correlation length is I'yx® and
k. is the effective wave number for whicﬁokgzs the shear rate. The functidB(z,,2,) is calculated in a
one-loop self-consistent theory.
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Response functions, in general, tend to diverge near the frequency and shear dependent critical viscosity and
second-order phase transition point. As the fluctuations bepresent our results in this paper.
come more long range and drive the system toward the tran- |t should be noted that the physical effect of both finite
sition, the response functions in the thermodynamic lifiit  frequency and finite shear are similar. They both inhibit the
statig and in the hydrodynamic limitif dynamic) diverge.  divergence of the hydrodynamic shear viscosity because they
Some, such as the susceptibiligtatio and thermal diffusiv-  produce an effective low-momentum cutoff to the continuous
ity (dynamig [1], diverge strongly with an exponent near gjstribution of modes in the system. This has prompted the

one, others, such as the specific hesiatig and shear vis-  yacent observation by Befd.7] that there should be a Cox-
cosity (dynamig [2-4], diverge weakly with an exponent wor; (18] rule for the critical fluid. The Cox-Merz rule

close to zero. The small exponents have always provided aly, ates the viscosity(S) measured at a shear ra€and
interesting challenge for theorists and experimentalists. Th%ero frequency to the viscosity(w) measured at some fre-
shear viscosity of ordinary fluids or binary mixtures, in par- q y

ticular, has been a favorite candidate for pushing theory anguency« and zero shear. This observation is often used to

experiment to the limit. The exponent is small but over the€Stimate shear thinning of polymer mefltd], and a slightly

last two decades the experimerifs6] have increased the 9eneralized form has been applied to concentrated suspen-
accuracy of the measurements so strongly that theorists hagon[20]. The physical origin of the Cox-Merz rule has been
had to worry about higher loofdd,8], something, which is €xplored by Renardj21]. It is clear that this empirical ob-
rarely done. servation will be correct in a general sense, but a complete
The critical divergence is masked if the system is not indescription of the shear thinning and especially shear thin-
the hydrodynamic limit. Hydrodynamic limit implies the ning in the presence of viscoelasticiyn this issue the Cox-
wavelength is larger than the critical correlation length andMerz rule is not applicablecan be had only on the basis of
all frequencies are lower than the rate of decay of criticala detailed calculation. This is the aim of our paper.
fluctuations. While wavelengths are always larger than the We begin by discussing the effect of critical fluctuations
critical correlation length, critical slowing down may imply on the shear viscosity of a fluid near its critical point. First,
that frequencies may not be smaller than the fluctuation rewe consider the proper hydrodynamic limit, i.e., wave vector
laxation rate. The frequency of an oscillating viscometer(k) and frequencyw) tend to zero.
used to measure the critical viscosity can, in that case, deter- In the hydrodynamic regime, characterized by the sole
mine the viscosity of the sample, and the fluid will becomelength scale, the correlation lengéF k=& (T-T) /T ™

viscoelastic. with v= % the shear viscosity diverges as
The frequency dependence of the viscosity has been pre- N
dicted[9,10] and measured over the last two decades. It has 7(K) = 7oK, (1)

been recognized by Oxtobji3] and other9-12 that a  pere x, is the small exponent discussed above which is

shear rate will also introduce a time scale in the problems, .04 {0 be around 0.068. The decay time of the critical
and, if the fluctuations are more long lived than this timeg .t ationss is given b.y '

scale, then experiments on this time scale will not feel the
longest-lived fluctuations and the viscosity will be limited by 1 L.,

the shear rate—a phenomenon known as shear thinning. The 7 =Tk k)= )_(k , ()
dependence of various static quantities on the shear rate as

well as its effect on light scattering has been considered byhereL is the Onsager coefficient andis the static suscep-
Onuki [14] as well as Onuki and Kawasaki5]. With so tibility. The critical susceptibility can, to a very good accu-
much information available on both theoretical and experi+acy, be taken ag (k,x)=k?*+«? and the Onsager coeffi-
mental fronts, experiments have been designed to test thaent or thermal diffusivity diverges at the critical point. The
shear thinning of critical viscoelastic fluids. The only previ- behavior of wavelength and correlation length dependent dif-
ous measurement of shear thinning near a critical point igusivity is governed by the Kawasaki functidii], which
that of Hamanaet al. [16], which was carried out on a mi- was simplified for practical use by Ferr¢R2] and can be
cellar solution. We have carried out a one-loop calculation ofused in the form
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L =To(k?+ 2712 (3) S=TK. (9

in D=3, whereD is the spatial dimensionality. The charac- Strong shear impliek.> «, while the reverse is the case of
teristic decay time of a fluctuation of wavelength equal to theweak shear. Our primary interest will be in strong shear,

correlation length is given by which will always be the case, sufficiently close to the criti-
N 5 cal point. For the shear thinning of a viscoelastic fluid we
7 =T (k) =Tk, (4)  now have two dimensionless numbers in the problem

- 3 — . .
Hydrodynamic regime implies that frequencies are such that @/ 2L ox andz,=w/ 2ok} and Eq.(6) is generalized to

w7<1. However, at a fixed frequenay, as « decreases on 7= ok M G(z1,25) |73 (10
approaching the critical point; diverges and it is not pos-
sible to satisfyw7<<1. In that situation Eq(1) cannot hold,
and, if 71=0, the response is limited by the frequeney
Sincew scales a%?’, it is clear that the limiting viscosity will
be of the form

Our purpose is to find an expression &z;,z,) at the one-
loop level.

The equation of motion for the order parameter is nonlin-
ear. The effect of the nonlinearity is to make the transport
coefficient divergent in the absence of the shear. The contri-

w) = go(— iw) >3 (5)  bution of the shear to the equation of motion is a linear term.

) . ) Consequently, we will work with an effective equation of

and the full viscosity will be governed by motion where the effect of the nonlinear terms will be
ke, ) = ok *1F(2) 3, (6) handled by a dressing of the transport coefficient. Conse-

quently, in momentum space, the order parameigy sat-
where F(z) is a function of the dimensionless varialite jsfies
=—iw/2lyk3. Forz—0, F(z2) —1 and ifz>1, F(2) <z The . )
simplest possible functional representationF¢z) is dp(K) + Si¢(l2) - &(ﬁ(@ + (12)
Ky X '

ot
F(2)=1+pz () _ R
wherey *=k?+«? andL=T"gx/? as explained in Eq(3). We

Now, 3 is a number ofO(1), which can be found from the now need to work out the susceptibility in the presencs,of
smallz form of the one-loop integral or from the>1 form.  and this is simply retracing Onuki’'s calculation with the
If determined from the low-frequency ergk37/16=0.59.  present_. This leads in a straightforward fashion to
From the high-frequency eng=0.2. The two-loop calcula- 12
tion is found to enhancg by about 30% to 0.8 at the low- Y 1=K+ 2+ k§<M3> ) (12)
frequency end. The experimental value found by Betrgl. ke
[6] is about 1.2.

If a shear rateS is now switched on, which results in a
mean flow in(say the x direction, then the velocity can be

The effect of the changed diffusion coefficient shows up in
the slightly differentk, dependence in the last term on the
right-hand side. In the expression for viscosity, the suscepti-

written as bility will be averaged over all directions, and, for that spe-
Z= Syé( ®) cific case, we will use an angle averaged formyof, where
' we replacelk |2 by kYXsin'/2 6 cos’? §)=3kY2 The one-
The shear rat& introduces a length scalg® defined by loop shear viscosity is now given by

2 4
_m [ X“(p,x,9p
1 18__ d .
GO 47TJ P i+ 2T x(p, k. S 2
=0 d°p 1/2p4 12 2 : 12 12 12
4 2(2 p _ 2(2 p
W*g(;) kﬁ(a) J "w*zropz{p“é(;) k5<z> J J
4
__"o 3 p 1
=—=_ | d . 13
87T, f p , 2(2 2[5 \172 0 2 1, 22 V2], \172 o 172 (13
A S I g B N R s Gl B o B R
a Zs | 3\ 22

It is the characterization of this one-loop integral thatthat Eq. (13) has a logarithmic divergence rather than
has to be carried out. The limi#,— (or k,—0, i.e., no a power-law divergence. To extracG(z;,z,) from
sheay has already been treated, and this is what we repEq. (15), we use the fact that, <1 and expand Eq(10)
resent to the lowest order by E§7). It should be noted as
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7= 1ok " G(21,2) ] = 770{1 —X,In k- Xél In G(ZlyZZ):|

A1
=ng+ | In —--InG(z,2) |,
k 3

(14)
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7w,S

Alke 6
_ "o p
- 21_‘Ofo dp{ 2 1 l/ZJZ{ 2( 2 1 1/2)1/2J .
+ - + + =
p 2|O L+pip Zp

(19

where 7 is a background viscosity and the part within the For z,— 0, we recover Eq(19), while for z,— o,

square brackets emerges from the loop calculation. Here we

anticipate the emergence of a cutoff wave numheand
include it in the definition of the background viscosity.
For z,— «, Eq. (13) becomes
. Alk pG 1

’ = d
"= o)y P+ PP+ L+ )

A
=B NS +in2-242-"z 4+ | (19
4 16

2F0 K
for zy<1. On the other hand faz;>1, n(w, k)= (79/2I'g)

x[In A/K—%In z+---], which when combined with Eq.

(15), leads to the approximation shown in E@).

Another limit that can be similarly explored is— 0 (i.e.,
z,—0 andz,— 0, butz;/z,# 0) in which case, Eq(13) be-
comes

PP+ =

2\z,

. Ak p4
7S k) = EJ dp 1/ 2 \2 5. (16)
oJo { ( 1) pl2+ 1J

For z;/z,< 1, an expansion similar to E¢15) obtains. For
(z4/2,)>1, we scale momenta hi,/z,)*° to find

Alkg 4
W(SKHO):E'{ dp d 231502
2loJo {pz+lp1/2+<é) J
2 zZ
wl A 4 8 2m }
=——|In—+-In2-—+—+---|. (1
2r0{nkc 37373 (A7
Combining Eq.(17) with the smallz;/z, form,
z 1/2 (2
G(zl—>o,z2_>0):{1+o.3<z—1) ] (18)
2

Finally, ask— 0, z; — % with finite z, and Eq.(15) reduces
to

A 1 37
o, = ﬂ{

nNn—--Inz,——5+
2 k. 3 7 8P

We thus obtain the following limiting forms:
G(ZLZZ) - 1 + O&l

| o
if Zy — 0,

31 |12
G(z,2) — 0.641| 1+ -5 if zg — oo,
2z,

7 1/2)|2
G(Zl,ZZ) —|1+0. Z_ if 21,2y — 0. (21)
2

The form ofG(z,z,), taking into account all the above con-
straints, is given by the interpretation formula

3 1+0.287
G(z,2) =[1+0.64]| 1+ TR 1 L (22)
2 14—
4]

This is the desired one-loop result. A phenomenological im-
provement can be obtained by going to the zero shear limit at
finite frequency. This implieg, — o, while z; is finite. In this
limit, accurate measuremenf6] have been made and we
know from these results that the first factor on the right-hand
side of Eq.(22) represents the data very well, provided 0.6 is
replaced by 1.2. As already explored, part of this can be
accounted for by a two-loop calculati¢@3], and, hence, a
phenomenological improvement of E@2) would be to re-
place the coefficient 0.6 by 1.2.

In closing we note that the details Gfz,, z,) differ in one
essential way from what could be learned on the basis of a
Cox-Merz rule. This has to do with the nonanalytic behavior
in z, andz, in the second factor of the right-hand side of Eq.
(22). This nonanalytic behavior is a direct reflection of the
form of the static susceptibility in E¢12). Thek:'? behavior
shown in Eq.(12) leads to the corresponding nonanalytic
behavior in Eq(22). This would be an important issue in any
forthcoming experiment.
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